В настоящее время на территории Украины диагностированы семь импактных структур. Важно отметить, что все метеоритные кратеры Украины за исключением Ильинецкого, являются погребенными структурами, установленными и изученными по керну скважин. Наибольшая из них - Болтышская импактная структура, диаметром 24 км, расположена в Кировоградской области. Зювиты, похожие на аналогичные породы Ильинецкого карьера, в этом кратере вскрыты некоторыми скважинами на глубине более 500 м под осадочными породами, заполняющими кратерную воронку.
На Украине обнаружен Болтышский кратер (диаметром около 25 км), возникший в результате падения метеорита более 100 млн. лет назад.
(Астрополис).
Район кратера на спутниковом снимке Google Earth. (Хрянина, 1987). |
Цепочка структур Ротмистровская, Болтышская и Зеленогайская по Вальтер и др. (1976) на карте Google Earth, дополненная Терновской астроблемой.
| Аномалии силы тяжести в районе кратера (получено по данным GLOBAL MARINE GRAVITY V18.1 средствами системы ENDDB). |
Рельеф кратеров (RADIO MOBILE).
| Стерео-рельеф (RADIO MOBILE). |
(Масайтис и др., 1980).
В последнее время установлен взрывной характер Болтышского (Голубев В.А. и др., 1974; Юрк Ю.Ю. и др., 1974; Масайтис В.Л., 1973) и Ротмистровского кратеров, расположенных на одной линии с Зеленогайским кратером примерно на одинаковом расстоянии, около 40 км, между ними. Одновозрастность этих структур весьма вероятна (мел). Можно предположить, что эта группа кратеров образовалась одновременно в результате падения фрагментов расколовшегося метеорита.
(Вальтер и др., 1976).
Главными элементами строения Балтышской и Логойской астроблем являются заполненные импактными образованиями глубокие внутренние кратеры с центр. поднятиями и окружающие их мелкие периферические депрессии, обычно заполненные кратерными отложениями. Предполагается, что края внутренних кратеров при увеличении общего диаметра импактных структур преобразуются в кольцевые поднятия сложных астроблем.
(Гуров, Гурова, 1988).
Для объяснения процессов образования кратеров простой формы применяется аналитическая модель, рассматривающая движение в-ва внутри кратера на стадии экскавации. Качественное приложение этой модели для объяснения процессов образования кратера с центр. поднятием позволяет предполагать, что внутренний кратер образуется в результате течения в-ва по сложным нисходящим траекториям и не сопровождается выбросом материала. Образование центр. поднятия предполагается в конце стадии экскавации в результате упругой отдачи или выдавливания пород основания кратера потоком в-ва, направленным вниз и внутрь структуры. Внешний кратер образуется в результате течения в-ва по сложным восходящим траекториям и сопровождается его выбросом за пределы структуры. Края внутреннего кратера фиксируют положение поверхности, разделяющей восходящий и нисходящий потоки в-ва. Края внутреннего кратера являются структурным элементом, определяющим переход от кратеров с центр. поднятием к многокольцевым структурам. Этот переход в условиях земной поверхности в кристал. породах осуществляется в интервале диам. кратеров от 24-25 (Болтышский, East Clearwater) до 32 км и более (West Clearwater, Charlevoix).
(Гуров и др., 1988).
Методом кластерного анализа хим. составов исследовались петрохимические особенности импактитов и пород мишени для трех астроблем: Жаманшин (Приаралье, СССР), Болтышской (Украина, СССР), Маникуаган (Канада). Для астроблем Жаманшин и Маникуаган выделены 2 типа импактных расплавов: высокогомогенизированных благодаря интенсивному перемешиванию при движении в полости кратера и гетерогенных, в значительной степени монопородных, которые формируются при струйных выбросах расплава, возникающего при внедрении метеорита в мишень и не успевающего перемешаться и гомогенизироваться до выброса и застеклования в воздухе. Расплавы первого типа фиксируются в донных залежах, второго - в закратерных выбросах и зювитах. В последнем случае они пространственно ассоциируются с гетерогенными стеклами и пемзами (характерно для астроблемы Жаманшин). Сравнение расплавных импактитов астроблем Болтышской и Маникуаган позволяет заключить, что в верхних частях мощных тел тагамитов (дореитов) должны проявляться закономерные отличия от основной массы расплава, связанные с его дегазацией.
(Фельдман, Ряховский, 1989).
Общая структура расплавных пород (подобных по хим. составу риолитам) Болтышской астроблемы микропорфировая. Микрофенокристаллы представлены полевыми шпатами и ортопироксенами (5-7%). Пироксены имеют правильную кристал., скелетную и сложную морфологию. Кристаллы сложной морфологии являются цельными внутри и скелетными снаружи. Микролиты также имеют различную морфологию. Наблюдаются определенные тенденции в изменении хим. составов от ортопироксенов правильной кристал. формы (I группы), через кристаллы скелетной морфологии (II группа) к микролитам (III группа). От I к III группе происходит увеличение содержания алюминия и частично кальция. Такая тенденция является аномальной (увеличение содержания Al и Ca в ортопироксенах отмечается обычно при повышении т-ры). Отмеченное явление связывается с историей охлаждения расплава. Правильные кристал. кристаллы, имеющие нормальный хим. состав, растут в относит. равновесии с расплавом (насыщенным флюидами, маловязким). Затем происходит отделение флюидной фазы, т-ра расплава падает, он становится вязким. На этой стадии (при неравновесных условиях) происходит рост скелетных кристаллов и микролитов с аномальным хим. составом.
(Sazonova, 1989).
Распределение TR отражает первичный характер пород мишени и особенности генезиса импактитов. Кислые иргизиты кратера Жаманшин характеризуются отрицательной европиевой аномалией, основные - положит., что по-видимому, исключает использование модели их единого источника. Жильные импактиты Терновской астроблемы обогащены тяжелыми лантаноидами по сравнению с породами мишени. Это можно объяснить преимущественной экстракцией расплавом в-ва граната, обогащенного тяжелыми TR. Импактиты Болтышской астроблемы имеют унифицированный спектр TR по сравнению с породами мишени и в среднем меньшую амплитуду отрицательной европиевой аномалии, что обясняется относит. обогащением их плагиоклазовым миналом
(Вальтер, Колесов, 1990).
Микровкрапленники ортопироксенов расплавных импактитов могут быть цельнотельными, сложными и скелетными. Микролиты также имеют различную форму. Наблюдаются определенные тенденции в изменении хим. составов в разных по размерам и морфологии группах ромбических пироксенов. Происходит увеличение содержания Al и Ca от ядра к краю и от микровкрапленников к микролитам. Такой характер зональности аномален и является обратной кинетической зональностью. Особенности морфологии и хим. составов ортопироксенов связаны с изменением условий жизни импактного расплава, прежде всего с увеличением скорости остывания импактного расплава и его вязкости.
(Сазонова, 1990).
На основании моделирования процессов, происходящих в ударных расплавах, и сопоставления петрографических и петрохимических особенностей расплавных импактитов с результатами экспериментов оценены начальные т-ры скорости остывания и т-ры затвердевания импактных расплавов астроблем Жаманшин и Болтышской. Показаны петрографические и геохимические различия расплавных импактитов, имеющих разные условия формирования.
(Сазонова и др., 1992).
Получена эмпирическая степенная зависимость глубина-диаметр внутренного кратера на основании данных о рельефе 3 сложных структур: Болтыш, Логойск, Ильинец. Периферийная часть сложных структур вокруг внутреннего кратера представлена мелкой круговой депрессией, заполненной отложениями кратера, породы ударного генезиса второстепенны или отсутствуют. Сопоставлены степень сохранности сложных структур и отношение диаметров периферийной депрессии и внутреннего кратера. Получена эмпирическая степенная зависимость глубины депрессии вокруг внутреннего кратера к диаметру структуры. Выделены 4 условных класса сохранности от эрозии среди ряда земных сложных структур, используя полученные эмпирические зависимости.
(Gurov et al., 1995).
Кратер с возрастом 90+-10 млн лет находится на сев. крыле Украинского щита; его диаметр составляет ~24 км при глубине до 580 м. Дно кратера после его формирования было заполнено расплавом, под воздействием которого на первом этапе атмосферные осадки из кратера испарялись и образование кратерного озера началось лишь после остывания расплава до 100 C и ниже. Горячая вода вступала в реакцию с породами стенок кратера и со сносимыми в него отложениями, изменяя их хим. состав. Высокая т-ра препятствовала развитию жизни и нижние 120 м разреза выполняющих кратер отложений совершенно лишены органических остатков. Следующий этап характеризовался накоплением осадков в условиях пресноводного бассейна с нормальной т-рой воды. Мощность этой части разреза, по палеофлористическим данным относимой к палеоцену, достигает 350 м. В эоцене и неогене кратер и прилегающие к нему участки были перекрыты осадками мощностью 160-180 м.
(Gurov, 1996)
Болтышская импактная структура окружена частично эродированным покровом выбросов. Степень сохранности покрова определяется палеорельефом поверхности фундамента к моменту его отложения и исходной мощностью выбросов. Реликты покрова сохранились на площади около 6400 км{2} на территории, в пределах которой исходная мощность выбросов по расчетам составляла от 10 м и более. Предложена оценка диаметра кратера Экремен по мощности его выбросов.
(Гуров, Хмельницкий, 1996).
Результаты анализа породообразующих, малых и рассеянных элементов, в т. ч. TR, а также изотопного состава Sr и Nd представляются для расплавного материала керна скважин залежей ударного расплава (с кластами и без) этих структур. Делается вывод о высокой степени геохимической гомогенности вещества по всем проанализированным элементам, кроме Rb и K в Болтышской структуре (что объясняется примесью вещества ударника). Однако свидетельств достижения изотопного равновесия (в масштабе кубометров вещества) не обнаруживается
(Holker, Deutsch, 1996).
Результаты изучения строения покрова баллистических выбросов Болтышской импактной структуры мощностью в десятки м на расстоянии 20-25 км от центра кратера и в 1-3 м - на расстоянии около 45 км от структуры. Выделены два типа брекчий с разным строением и составом оболомочного материала: мономиктового состава, залегающие на кристаллических породах фундамента и полимиктовые, залегающие на поверхности брекчий первого типа. Обломки и породы брекчий содержат признаки ударных деформаций от слабых до умеренных степеней. Брекчии первого типа образовались в результате брекчирования поверхности мишени при падении крупных блоков пород, выброшенных из кратера по баллистическим траекториям, а второго - при отложении выброшенного из кратера материала.
(Лосевская, 2002).
Принципиально новые биостратиграфические данные с большой определенностью позволяют датировать время образования Болтышского кратера интервалом 66,8-65,0 млн лет тому назад и рассматривать его как "пограничный", очень близкий по времени образования или синхронный с K/T-границей. Для окончательного решения вопроса с соотношении болтышских выбросов с K/T-границей необходимо тщательно изучить разрезы примыкающей части ДДВ с применением прецизионных методов бурения и анализа керна. Получить материал для такого сопоставления возможно при дополнительном изучении разреза более древней Ротмистровской астроблемы. Для импактитов этой структуры K-Ar методом ранее был определен возраст (130'+-'10) млн лет. В верхней половине кратерных осадков данной астроблемы (скважина 5012, глубина 157 м) установлены морские отложения, охарактеризованные фауной аммонитов Kossmatella aff. agassizina и зональным видом фораминифер Schackoina carbi, что позволяет отнести их к низам среднего апта (около 112 млн лет). Полученный результат определения возраста Болтышского события демонстрирует возможность достаточно точного биостратиграфического датирования земных астроблем по закратерным выбросам
(Вальтер, Плотникова, 2003).
Болтышская импактная структура диаметром 24 км и глубиной до истинного дна около 1 км расположена в центральной части УЩ в бассейне р. Тясмин - правого притока р. Днепр. Кратер образован в породах кристаллического основания, представленных в этом районе кировоградскими гранитами и биотитовыми гнейсами. По геологическим данным, нижняя возрастная граница образования кратера определяется как сеноман-турон на основании залегания толщи выбросов на поверхности фаунистически охарактеризованных осадочных отложений этого возраста в Ротмистровском кратере, а также присутствия в составе выбросов обломков верхнемеловых пород, представленных мелом и мергелем. Верхняя возрастная граница образования импактной структуры соответствует танетскому ярусу палеоцена согласно определениям палеофлоры в кратерных осадках импактной структуры, а также на основании залегания на поверхности выбросов фаунистически охарактеризованных осадочных пород монского яруса. Датировка расплавных импактитов Болтышского кратера калий-аргоновым методом, выполненная в различных лабораториях, показала значения от 55 млн лет до 170 млн лет. Наиболее часто цитируемым значением возраста Болтышской структуры является (88'+-'3) млн лет, которое приводится в списках импактных структур Земли. По этим данным, Болтышский кратер на Украине возрастом 88 млн лет и кратер Стин Ривер на Канадском щите возрастом 94 млн лет. упоминаются как импактные структуры, время образования которых наиболее близко к возрасту сеноман-туронского рубежа массового вымирания органического мира. По данным трекового метода, возраст стекловатых импактитов Болтышского кратера равен по двум определениям соответственно (96'+-'10) и (105'+-'13) млн лет. Более позднее определение возраста одного образца расплавного импактита составляет (60,5'+-'1,1) млн лет. Возраст мел-палеогенового кратера Чиксулуб, образование которого определило появление мел-палеогенового рубежа и массовое вымирание 47% органического мира, составляет (65,46'+-'0,6) млн лет. Возраст Болтышского кратера, по данным аргон-аргонового метода, равен (65,17'+-'0,64) млн лет, т. е. на 0,3 млн лет моложе кратера Чиксулуб. Хотя в пределах ошибки определения возраста этих двух кратеров можно предполагать их одновременное образование, степень непосредственного участия Болтышской импактной структуры в катастрофических событиях на границе мела и палеогена требует дальнейшего изучения для более полного понимания последовательности ударных событий в конце мезозойской эры. Важнейшие данные могут быть получены при изучении катастрофического мел-палеогенового слоя в Украине и в прилегающих регионах. При более молодом возрасте Болтышского кратера глобально распространенный катастрофический слой кратера Чиксулуб должен был отлагаться ранее Болтышских выбросов. В этом случае в центральной части УЩ он был бы уничтожен и перемешан с материалом выбросов Болтышского кратера. В случае относительно более древнего возраста Болтышской структуры глобально распространенный слой мог сохраниться в нижней части разреза толщи ее кратерных осадков. По мнению У. Альвареса, поиски катастрофического слоя в базальной части разреза Болтышского кратера представляют большой интерес
(Гуров, Келли, 2003).
Болтышский кратер диаметром 24 км является наиболее крупной импактной структурой на Украинском щите и в юго-западной части Восточно-Европейской платформы. Импактная структура полностью заполнена посткратерными осадками и перекрыта толщей четвертичных отложений, в результате чего кратер слабо выражен в морфологии современной поверхности. Всестороннее изучение Болтышского кратера, в частности определение геохимическими методами ее возраста, представляет большой интерес в связи с установлением его одновременного образования с пограничным мел-палогеновым кратером Чиксулуб в Мексике, формирование которого явилось завершающим событием для мезозойской эры и знаменовало появление мел-палеогенового рубежа
(Ямниченко, 2005).
Полезные ископаемые, приуроченные к структуре - горючие сланцы (сапропелиты).
(Вишневский, 2007).
Болтышская депрессия была разбурена по нескольким профилям, в результате чего удалось установить распространенность одних и тех же растений во всей флороносной сапропелитовой толще. Ее возраст оценивается как палеоценовый - раннеэоценовый. В раннетретичной флоре Болтышки Weichselia является, по-видимому, меловым реликтом. Вероятно, заросли пионерных палеогруппировок папоротников, Myrica, Comptonia и Pseudosalix располагались в прибрежной части пост-импактного (К/Т) пресноводного водоема (озера), в котором и накапливалась болтышская сапропелитовая толща
(Викулин, 2012).
Проведено электронно-микроскопическое изучение акцессорной сульфидной минерализации в составе ударно-расплавленных пород Болтышской импактной структуры на Украинском щите. Наиболее распространенный сульфид - гексагональный пирротин, образующий сферулы и таблитчатые кристаллиты размером до 30 мкм в стекловатой матрице расплавных импактитов. В то время как преобладающая часть сферул по составу соответствует высокотемпературному пирротину Fe[0.88]S[1,00], в них содержатся участки неправильной формы с повышенным содержанием никеля и меди. Отдельные точечные анализы сферул указывают на наличие в минерале некоторых элементов платиновой группы (ЭПГ) в количестве до десятых процента. Сканирование зерен пирротина по разрезам показывает их обогащение ЭПГ в два-четыре раза по сравнению с вмещающей матрицей. Сфалерит в расплавных импактитах образует единичные зерна неправильной формы с содержанием железа до 5 мас. %. В составе сфалерита установлено содержание ЭПГ, в несколько раз превышающее их содержание в матрице. Точечный микрозондовый анализ позволил установить присутствие отдельных ЭПГ в минерале (до 0,1 n мас.%). Проведенные исследования подтверждают роль сульфидов в составе ударно-расплавленных пород как концентраторов никеля и ЭПГ, вероятным источником которых было вещество ударника, образовавшего Болтышскую импактную структуру
(Гуров, Пермяков, 2014).
Болтышская импактная структура образовалась на мел-палеогеновом рубеже, примерно одновременно с кратером Чиксулуб (Мексика), определившим катастрофические события в конце мелового периода. Изучение посткратерных осадков в Болтышской структуре позволило установить в базальной части разреза слой катастрофических отложений, связанных с образованием кратера Чиксулуб, и тем самым определить образование Болтышского кратера на 2000-5000 лет ранее Чиксулуба
(Гуров, Гожик, 2015).
Представлена адаптация методики структурно-термо-атмогеохимических исследований (СТАГИ) к поиску и прогнозированию залежей углеводородов импактных структур. Определены основные особенности источников распространения и проявления нефтегазоносности астроблем. Рассмотрены особенности прогнозирования залежей углеводородов Оболонский, Болтышской, Ротмистровской и Зеленогайской
(Bagriy, Griga, 2015).